In situ wrapping of the cathode material in lithium-sulfur batteries
نویسندگان
چکیده
منابع مشابه
Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries.
The commercialization of lithium-sulfur batteries is hindered by low cycle stability and low efficiency, which are induced by sulfur active material loss and polysulfide shuttle reaction through dissolution into electrolyte. In this study, sulfur-impregnated disordered carbon nanotubes are synthesized as cathode material for the lithium-sulfur battery. The obtained sulfur-carbon tube cathodes d...
متن کاملInvestigation of rechargeable lithium-sulfur batteries by in-situ techniques
The lithium-sulfur (Li-S) battery is currently of great interest for the research community. This battery promises with its high theoretical capacity (1675 mA h) and energy density (2600 Wh kg) to be one of the energy storage systems of the future. Impressive advances in capacity improvement and capacity stability have been reported recently, e.g. in [1,2]. Nevertheless, the electrochemical pro...
متن کاملConductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries
As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect that deteriorates cycling stability. The state-of-the-art approaches are to confine sulfur in a conductive matrix. In this work, we utilize ...
متن کاملPhospho-Olivine as Advanced Cathode Material for Lithium Batteries
Nano-sized and micron-sized LiFePO4 electrode materials were prepared by a sol gel and coprecipitation reactions. An improvement of the cycling and rate performances in lithium cells was observed for the carbon coated LiFePO4 materials. The coating process uses a solid/gas-phase reaction which consists of decomposing propylene gas, as carbon source, inside a reactor containing olivine LiFePO4 m...
متن کاملUltrafine Sulfur Nanoparticles in Conducting Polymer Shell as Cathode Materials for High Performance Lithium/Sulfur Batteries
We report the synthesis of ultrafine S nanoparticles with diameter 10 ~ 20 nm via a membrane-assisted precipitation technique. The S nanoparticles were then coated with conducting poly (3,4-ethylenedioxythiophene) (PEDOT) to form S/PEDOT core/shell nanoparticles. The ultrasmall size of S nanoparticles facilitates the electrical conduction and improves sulfur utilization. The encapsulation of co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2017
ISSN: 2041-1723
DOI: 10.1038/s41467-017-00656-8